Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.065
Filtrar
1.
Plant Cell Rep ; 43(5): 126, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652181

RESUMO

KEY MESSAGE: Innovatively, we consider stomatal detection as rotated object detection and provide an end-to-end, batch, rotated, real-time stomatal density and aperture size intelligent detection and identification system, RotatedeStomataNet. Stomata acts as a pathway for air and water vapor in the course of respiration, transpiration, and other gas metabolism, so the stomata phenotype is important for plant growth and development. Intelligent detection of high-throughput stoma is a key issue. Nevertheless, currently available methods usually suffer from detection errors or cumbersome operations when facing densely and unevenly arranged stomata. The proposed RotatedStomataNet innovatively regards stomata detection as rotated object detection, enabling an end-to-end, real-time, and intelligent phenotype analysis of stomata and apertures. The system is constructed based on the Arabidopsis and maize stomatal data sets acquired destructively, and the maize stomatal data set acquired in a non-destructive way, enabling the one-stop automatic collection of phenotypic, such as the location, density, length, and width of stomata and apertures without step-by-step operations. The accuracy of this system to acquire stomata and apertures has been well demonstrated in monocotyledon and dicotyledon, such as Arabidopsis, soybean, wheat, and maize. The experimental results that the prediction results of the method are consistent with those of manual labeling. The test sets, the system code, and their usage are also given ( https://github.com/AITAhenu/RotatedStomataNet ).


Assuntos
Arabidopsis , Fenótipo , Estômatos de Plantas , Zea mays , Estômatos de Plantas/fisiologia , Zea mays/genética , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/fisiologia
2.
Methods Mol Biol ; 2790: 63-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649566

RESUMO

Stomata can be distributed exclusively on the abaxial or adaxial leaf surface, but they are most commonly found on both leaf surfaces. Variations in stomatal arrangement, patterning, and the impact on photosynthesis can be measured using an infrared gas exchange system. However, when using standard gas exchange techniques, both surfaces are measured together and averaged to provide leaf-level values. Employing an innovative gas exchange apparatus with two infrared gas analyzers, separate gaseous flux from both leaf surfaces can be quantified simultaneously and independently. Here, we provide examples of typical measurements that can be performed using a "split chamber" gas exchange system.


Assuntos
Fotossíntese , Estômatos de Plantas , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Gases/química , Folhas de Planta/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/química
3.
Methods Mol Biol ; 2790: 317-332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649578

RESUMO

Infrared thermography offers a rapid, noninvasive method for measuring plant temperature, which provides a proxy for stomatal conductance and plant water status and can therefore be used as an index for plant stress. Thermal imaging can provide an efficient method for high-throughput screening of large numbers of plants. This chapter provides guidelines for using thermal imaging equipment and illustrative methodologies, coupled with essential considerations, to access plant physiological processes.


Assuntos
Raios Infravermelhos , Fenótipo , Termografia , Termografia/métodos , Plantas , Ensaios de Triagem em Larga Escala/métodos , Fenômenos Fisiológicos Vegetais , Temperatura , Estômatos de Plantas/fisiologia
4.
Plant Physiol Biochem ; 208: 108500, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513518

RESUMO

BREVIS RADIX (BRX) is a small plant-specific and evolutionary conserved gene family with divergent yet partially redundant biological functions including root and shoot growth, stomatal development and tiller angle in plants. We characterized a BRX family gene from wheat (Triticum aestivum) by gain-of-function in Arabidopsis. Overexpression of TaBRXL2A resulted in longer primary roots with increased root meristem size and higher root growth under control and exogenous hormone treatments as compared to wild type (Col-0) plants. Overexpression lines also exhibited significant differences with the wild type such as increased rosette size, higher leaf number and leaf size. At reproductive stage, overexpression lines exhibited wider siliques and higher grain weight per plant. Under drought stress, overexpression lines exhibited enhanced drought tolerance in terms of higher chlorophyll retention and lower oxidative stress, thereby leading to significant recovery from drought stress. The analysis suggests that the inherent lower stomatal density in the leaves of overexpression lines and higher stomatal closure in response to ABA might contribute to lower water loss from the overexpression lines. Furthermore, TaBRXL2A protein showed membrane localization, presence of conserved residues at N-terminal for palmitoylation, and phosphosites in the linker region which are prescribed for its potential role in protophloem differentiation and stomatal lineage. Thus, we identified a TaBRX family gene which is involved in developmental pathways essential for plant growth, and also enhances drought tolerance in Arabidopsis.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Seca , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Tamanho do Órgão , Estômatos de Plantas/fisiologia , Secas , Regulação da Expressão Gênica de Plantas
5.
Plant Physiol Biochem ; 209: 108565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537380

RESUMO

Numerous studies have clarified the impacts of magnesium (Mg) on leaf photosynthesis from the perspectives of protein synthesis, enzymes activation and carbohydrate partitioning. However, it still remains largely unknown how stomatal and mesophyll conductances (gs and gm, respectively) are regulated by Mg. In the present study, leaf gas exchanges, leaf hydraulic parameters, leaf structural traits and cell wall composition were examined in rice plants grown under high and low Mg treatments to elucidate the impacts of Mg on gs and gm. Our results showed that reduction of leaf photosynthesis under Mg deficiency was mainly caused by the decreased gm, followed by reduced leaf biochemical capacity and gs, and leaf outside-xylem hydraulic conductance (Kox) was the major factor restricting gs under Mg deficiency. Moreover, increased leaf hemicellulose, lignin and pectin contents and decreased cell wall effective porosity were observed in low Mg plants relative to high Mg plants. These results suggest that Kox and cell wall composition play important roles in regulating gs and gm, respectively, in rice plants under Mg shortages.


Assuntos
Deficiência de Magnésio , Oryza , Oryza/metabolismo , Estômatos de Plantas/fisiologia , Água/metabolismo , Folhas de Planta/metabolismo , Fotossíntese/fisiologia , Células do Mesofilo/metabolismo , Dióxido de Carbono/metabolismo
6.
Physiol Plant ; 176(2): e14245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450764

RESUMO

Leaf dark respiratory CO2 -release (RD ) is, according to some literature, dependent on the rate of leaf transpiration. If this is true, then at a given vapor pressure deficit, the leaf stomatal conductance (gs ) will be expected to be a controlling factor of measured RD at any given time. We artificially lowered leaf gs by applying abscisic acid (ABA). Although leaf RD generally covaried temporally with gs , artificially lowering gs by applying ABA does not affect the measured leaf RD . These results indicate that observed diel fluctuations in gs are not directly influencing the measured leaf RD , thereby simplifying both future studies and the interpretation of past studies of the underlying environmental- and physiological drivers of temporal variation in leaf RD .


Assuntos
Ácido Abscísico , Dióxido de Carbono , Folhas de Planta , Ácido Abscísico/farmacologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal
7.
Plant Cell Environ ; 47(5): 1769-1781, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314642

RESUMO

Stomata play a pivotal role in regulating gas exchange between plants and the atmosphere controlling water and carbon cycles. Accordingly, we investigated the impact of ultraviolet-B radiation, a neglected environmental factor varying with ongoing global change, on stomatal morphology and function by a Comprehensive Meta-Analysis. The overall UV effect at the leaf level is to decrease stomatal conductance, stomatal aperture and stomatal size, although stomatal density was increased. The significant decline in stomatal conductance is marked (6% in trees and >10% in grasses and herbs) in short-term experiments, with more modest decreases noted in long-term UV studies. Short-term experiments in growth chambers are not representative of long-term field UV effects on stomatal conductance. Important consequences of altered stomatal function are hypothesized. In the short term, UV-mediated stomatal closure may reduce carbon uptake but also water loss through transpiration, thereby alleviating deleterious effects of drought. However, in the long term, complex changes in stomatal aperture, size, and density may reduce the carbon sequestration capacity of plants and increase vegetation and land surface temperatures, potentially exacerbating negative effects of drought and/or heatwaves. Therefore, the expected future strength of carbon sink capacity in high-UV regions is likely overestimated.


Assuntos
Estômatos de Plantas , Raios Ultravioleta , Estômatos de Plantas/fisiologia , Ecossistema , Folhas de Planta/fisiologia , Água/fisiologia , Plantas , Transpiração Vegetal/fisiologia
8.
New Phytol ; 242(2): 444-452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396304

RESUMO

Stomatal closure under high VPDL (leaf to air vapour pressure deficit) is a primary means by which plants prevent large excursions in transpiration rate and leaf water potential (Ψleaf) that could lead to tissue damage. Yet, the drivers of this response remain controversial. Changes in Ψleaf appear to drive stomatal VPDL response, but many argue that dynamic changes in soil-to-leaf hydraulic conductance (Ks-l) make an important contribution to this response pathway, even in well-hydrated soils. Here, we examined whether the regulation of whole plant stomatal conductance (gc) in response to typical changes in daytime VPDL is influenced by dynamic changes in Ks-l. We use well-watered plants of two species with contrasting ecological and physiological features: the herbaceous Arabidopsis thaliana (ecotype Columbia-0) and the dry forest conifer Callitris rhomboidea. The dynamics of Ks-l and gc were continuously monitored by combining concurrent in situ measurements of Ψleaf using an open optical dendrometer and whole plant transpiration using a balance. Large changes in VPDL were imposed to induce stomatal closure and observe the impact on Ks-l. In both species, gc was observed to decline substantially as VPDL increased, while Ks-l remained stable. Our finding suggests that stomatal regulation of transpiration is not contingent on a decrease in Ks-l. Static Ks-l provides a much simpler explanation for transpiration control in hydrated plants and enables simplified modelling and new methods for monitoring plant water use in the field.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Solo , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Água/metabolismo , Transpiração Vegetal/fisiologia
9.
New Phytol ; 241(6): 2366-2378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38303410

RESUMO

The strong covariation of temperature and vapour pressure deficit (VPD) in nature limits our understanding of the direct effects of temperature on leaf gas exchange. Stable isotopes in CO2 and H2 O vapour provide mechanistic insight into physiological and biochemical processes during leaf gas exchange. We conducted combined leaf gas exchange and online isotope discrimination measurements on four common European tree species across a leaf temperature range of 5-40°C, while maintaining a constant leaf-to-air VPD (0.8 kPa) without soil water limitation. Above the optimum temperature for photosynthesis (30°C) under the controlled environmental conditions, stomatal conductance (gs ) and net photosynthesis rate (An ) decoupled across all tested species, with gs increasing but An decreasing. During this decoupling, mesophyll conductance (cell wall, plasma membrane and chloroplast membrane conductance) consistently and significantly decreased among species; however, this reduction did not lead to reductions in CO2 concentration at the chloroplast surface and stroma. We question the conventional understanding that diffusional limitations of CO2 contribute to the reduction in photosynthesis at high temperatures. We suggest that stomata and mesophyll membranes could work strategically to facilitate transpiration cooling and CO2 supply, thus alleviating heat stress on leaf photosynthetic function, albeit at the cost of reduced water-use efficiency.


Assuntos
Dióxido de Carbono , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Temperatura , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Isótopos , Água/fisiologia
10.
Curr Biol ; 34(4): 881-894.e7, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38350447

RESUMO

In Arabidopsis, stomatal development and patterning require tightly regulated cell division and cell-fate differentiation that are controlled by key transcription factors and signaling molecules. To identify new regulators of stomatal development, we assay the transcriptomes of plants bearing enriched stomatal lineage cells that undergo active division. A member of the novel regulators at the plasma membrane (NRPM) family annotated as hydroxyproline-rich glycoproteins was identified to highly express in stomatal lineage cells. Overexpressing each of the four NRPM genes suppressed stomata formation, while the loss-of-function nrpm triple mutants generated severely overproduced stomata and abnormal patterning, mirroring those of the erecta receptor family and MAPKKK yoda null mutants. Manipulation of the subcellular localization of NRPM1 surprisingly revealed its regulatory roles as a peripheral membrane protein instead of a predicted cell wall protein. Further functional characterization suggests that NRPMs function downstream of the EPF1/2 peptide ligands and upstream of the YODA MAPK pathway. Genetic and cell biological analyses reveal that NRPM may promote the localization and function of the ERECTA receptor proteins at the cell surface. Therefore, we identify NRPM as a new class of signaling molecules at the plasma membrane to regulate many aspects of plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Estômatos de Plantas/fisiologia , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas
11.
J Integr Plant Biol ; 66(3): 368-393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38319001

RESUMO

Global climate change-caused drought stress, high temperatures and other extreme weather profoundly impact plant growth and development, restricting sustainable crop production. To cope with various environmental stimuli, plants can optimize the opening and closing of stomata to balance CO2 uptake for photosynthesis and water loss from leaves. Guard cells perceive and integrate various signals to adjust stomatal pores through turgor pressure regulation. Molecular mechanisms and signaling networks underlying the stomatal movements in response to environmental stresses have been extensively studied and elucidated. This review focuses on the molecular mechanisms of stomatal movements mediated by abscisic acid, light, CO2 , reactive oxygen species, pathogens, temperature, and other phytohormones. We discussed the significance of elucidating the integrative mechanisms that regulate stomatal movements in helping design smart crops with enhanced water use efficiency and resilience in a climate-changing world.


Assuntos
Reguladores de Crescimento de Plantas , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Ácido Abscísico , Folhas de Planta/fisiologia , Plantas , Água/fisiologia
12.
J Exp Bot ; 75(7): 2156-2175, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38207009

RESUMO

Co-occurring heat and drought stresses challenge crop performance. Stomata open to promote evaporative cooling during heat stress, but close to retain water during drought stress, which resulted in complex stomatal regulation under combined heat and drought. We aimed to investigate stomatal regulation in leaves and flowers of perennial, indeterminate cultivars of tomatoes subjected to individual and combined heat and drought stress followed by a recovery period, measuring morphological, physiological, and biochemical factors involved in stomatal regulation. Under stress, stomata of leaves were predominantly affected by drought, with lower stomatal density and stomatal closing, resulting in significantly decreased photosynthesis and higher leaf temperature. Conversely, stomata in sepals seemed affected mainly by heat during stress. The differential patterns in stomatal regulation in leaves and flowers persisted into the recovery phase as contrasting patterns in stomatal density. We show that flower transpiration is regulated by temperature, but leaf transpiration is regulated by soil water availability during stress. Organ-specific patterns of stomatal development and abscisic acid metabolism mediated this phenomenon. Our results throw light on the dual role of stomata in heat and drought tolerance of vegetative and generative organs, and demonstrate the importance of considering flower surfaces in the phenotyping of stomatal reactions to stress.


Assuntos
Solanum lycopersicum , Estômatos de Plantas/fisiologia , Secas , Ácido Abscísico/metabolismo , Folhas de Planta/metabolismo , Água/metabolismo , Flores/metabolismo
13.
Plant Cell Environ ; 47(4): 1171-1184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38164061

RESUMO

To successfully survive, develop, grow and reproduce, multicellular organisms must coordinate their molecular, physiological, developmental and metabolic responses among their different cells and tissues. This process is mediated by cell-to-cell, vascular and/or volatile communication, and involves electric, chemical and/or hydraulic signals. Within this context, stomata serve a dual role by coordinating their responses to the environment with their neighbouring cells at the epidermis, but also with other stomata present on other parts of the plant. As stomata represent one of the most important conduits between the plant and its above-ground environment, as well as directly affect photosynthesis, respiration and the hydraulic status of the plant by controlling its gas and vapour exchange with the atmosphere, coordinating the overall response of stomata within and between different leaves and tissues plays a cardinal role in plant growth, development and reproduction. Here, we discuss different examples of local and systemic stomatal coordination, the different signalling pathways that mediate them, and the importance of systemic stomatal coordination to our food supply, ecosystems and weather patterns, under our changing climate. We further discuss the potential biotechnological implications of regulating systemic stomatal responses for enhancing agricultural productivity in a warmer and CO2 -rich environment.


Assuntos
Ecossistema , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Plantas/metabolismo , Folhas de Planta/metabolismo , Fotossíntese/fisiologia , Mudança Climática
14.
Int J Radiat Biol ; 100(3): 445-452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166555

RESUMO

PURPOSE: Evaluate the structural damage and the changes in the photosynthesis and transpiration rates of aquatic lirium leaves caused by ultrasound (US) irradiation in search of environmentally friendly methodologies for the control of this weed. MATERIALS AND METHODS: Aquatic lirium plants were extracted from Xochimilco water canals in Mexico City. A part of the group of plants was selected for irradiation, and the rest formed the control group. The irradiation plants group was exposed to US irradiation of 17 kHz frequency and 30 W × 4 output power for 2 h, at noon and 25 °C room temperature. The structural analysis was done with a MOTICAM 1 digital camera, 800 × 600 pixels, incorporated into the MOTIC PSM-1000 optical microscope and edited with Motic Images Plus 2.0 ML software. The total stomata density and the damaged stomata density were determined by dividing the numbers of total and damaged stomata by the visual field area (67,917 mm2), respectively. The leaves' photosynthesis and transpiration rates were measured using an LI-6400XT Portable Photosynthesis System. RESULTS: Significant damage was observed in the stomata and epidermal cells, finding that the average ratio between the damaged and total stomata densities as a function of time (days) showed an exponential increase described by a Box-Lucas equation with a saturation value near unity and a maximum rate of change of the density of damaged stomata on zero-day (immediately after irradiation), decreasing as the days go by. The transpiration rate showed a sudden increase during the first hour after irradiation, reaching a maximum of 36% of its value before irradiation. It then quickly fell during the next 6 days and more slowly until the 21st day, decreasing 79.9% of its value before irradiation. The photosynthetic rate showed similar behavior with a 37.7% maximum increment and a 73.6% minimum decrease of its value before irradiation. CONCLUSIONS: The results of structural stomata damage on the ultrasound-irradiated aquatic lirium leaves are consistent with an excessive ultrasound stimulation on stomata's mechanical operation by guard cells that produce the measured significant increase of the photosynthetic and transpiration rates during the first hour after irradiation. The initial high evaporation could alter the water potential gradient, with a possible generation of tensions in the xylem that could cause embolism in their conduits. The loss of xylem conductivity or hydraulic failure would be consistent with the observed significant fall in the photosynthesis and transpiration rates of the aquatic lirium leaves after its sudden rise in the first hour after irradiation.


Assuntos
Estômatos de Plantas , Transpiração Vegetal , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Fotossíntese , Folhas de Planta , Água
15.
New Phytol ; 241(6): 2506-2522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258389

RESUMO

Although polyploid plants have lower stomatal density than their diploid counterparts, the molecular mechanisms underlying this difference remain elusive. Here, we constructed a network based on the triploid poplar transcriptome data and triple-gene mutual interaction algorithm and found that PpnMYC2 was related to stomatal development-related genes PpnEPF2, PpnEPFL4, and PpnEPFL9. The interactions between PpnMYC2 and PagJAZs were experimentally validated. PpnMYC2-overexpressing poplar and Arabidopsis thaliana had reduced stomatal density. Poplar overexpressing PpnMYC2 had higher water use efficiency and drought resistance. RNA-sequencing data of poplars overexpressing PpnMYC2 showed that PpnMYC2 promotes the expression of stomatal density inhibitors PagEPF2 and PagEPFL4 and inhibits the expression of the stomatal density-positive regulator PagEPFL9. Yeast one-hybrid system, electrophoretic mobility shift assay, ChIP-qPCR, and dual-luciferase assay were employed to substantiate that PpnMYC2 directly regulated PagEPF2, PagEPFL4, and PagEPFL9. PpnMYC2, PpnEPF2, and PpnEPFL4 were significantly upregulated, whereas PpnEPFL9 was downregulated during stomatal formation in triploid poplar. Our results are of great significance for revealing the regulation mechanism of plant stomatal occurrence and polyploid stomatal density, as well as reducing stomatal density and improving plant water use efficiency by overexpressing MYC2.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Populus , Água/metabolismo , Triploidia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estômatos de Plantas/fisiologia , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Secas , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética
16.
Plant Cell Environ ; 47(2): 497-510, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37905689

RESUMO

The phytohormone abscisic acid (ABA) is synthesised by plants during drought to close stomata and regulate desiccation tolerance pathways. Conifers and some angiosperms with embolism-resistant xylem show a peaking-type (p-type) response in ABA levels, in which ABA levels increase early in drought then decrease as drought progresses, declining to pre-stressed levels. The mechanism behind this dynamic remains unknown. Here, we sought to characterise the mechanism driving p-type ABA dynamics in the conifer Callitris rhomboidea and the highly drought-resistant angiosperm Umbellularia californica. We measured leaf water potentials (Ψl ), stomatal conductance, ABA, conjugates and phaseic acid (PA) levels in potted plants during a prolonged but non-fatal drought. Both species displayed a p-type ABA dynamic during prolonged drought. In branches collected before and after the peak in endogenous ABA levels in planta, that were rehydrated overnight and then bench dried, ABA biosynthesis was deactivated beyond leaf turgor loss point. Considerable conversion of ABA to conjugates was found to occur during drought, but not catabolism to PA. The mechanism driving the decline in ABA levels in p-type species may be conserved across embolism-resistant seed plants and is mediated by sustained conjugation of ABA and the deactivation of ABA accumulation as Ψl becomes more negative than turgor loss.


Assuntos
Embolia , Magnoliopsida , Traqueófitas , Estômatos de Plantas/fisiologia , Secas , Folhas de Planta/metabolismo , Ácido Abscísico/metabolismo , Água/metabolismo , Magnoliopsida/fisiologia
17.
Mol Plant ; 17(1): 26-49, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041402

RESUMO

The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens, characterized by adaptive strategies that influence both plant resistance and pathogen virulence. The ongoing climate change introduces further complexity, affecting pathogen invasion and host immunity. This review delves into recent advances on our understanding of the mechanisms governing immunity-related stomatal movement and patterning with an emphasis on the regulation of stomatal opening and closure dynamics by pathogen patterns and host phytocytokines. In addition, the review explores how climate changes impact plant-pathogen interactions by modulating stomatal behavior. In light of the pressing challenges associated with food security and the unpredictable nature of climate changes, future research in this field, which includes the investigation of spatiotemporal regulation and engineering of stomatal immunity, emerges as a promising avenue for enhancing crop resilience and contributing to climate control strategies.


Assuntos
Estômatos de Plantas , Plantas , Estômatos de Plantas/fisiologia
18.
Plant Cell Environ ; 47(3): 817-831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38013592

RESUMO

Stomata are microscopic pores at the surface of plant leaves that facilitate gaseous diffusion to support photosynthesis. The guard cells around each stoma regulate the pore aperture. Plants that carry out C4 photosynthesis are usually more resilient than C3 plants to stress, and their stomata operate over a lower dynamic range of CO2 within the leaf. What makes guard cells of C4 plants more responsive than those of C3 plants? We used gas exchange and electrophysiology, comparing stomatal kinetics of the C4 plant Gynandropsis gynandra and the phylogenetically related C3 plant Arabidopsis thaliana. We found, with varying CO2 and light, that Gynandropsis showed faster changes in stomata conductance and greater water use efficiency when compared with Arabidopsis. Electrophysiological analysis of the dominant K+ channels showed that the outward-rectifying channels, responsible for K+ loss during stomatal closing, were characterised by a greater maximum conductance and substantial negative shift in the voltage dependence of gating, indicating a reduced inhibition by extracellular K+ and enhanced capacity for K+ flux. These differences correlated with the accelerated stomata kinetics of Gynandropsis, suggesting that subtle changes in the biophysical properties of a key transporter may prove a target for future efforts to engineer C4 stomatal kinetics.


Assuntos
Arabidopsis , Magnoliopsida , Estômatos de Plantas/fisiologia , Dióxido de Carbono , Folhas de Planta/fisiologia , Fotossíntese/fisiologia , Arabidopsis/fisiologia , Gases
19.
Plant Sci ; 339: 111928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992898

RESUMO

Plants have the ability to undergo reversible behavioral, morphological, or physiological changes in response to environmental conditions. This plasticity enables plants to cope with uncertain environmental conditions, such as drought. A primary plastic trait is the rate of stomatal response to changes in ambient conditions, which determines the amount of water lost via transpiration, as well as levels of CO2 absorption, growth, and productivity. Here, we examined the differences between domesticated (S. lycopersicum cv. M82) and wild tomato (S. pennellii) species and their responses to drought stress. The plants were grown in pots in a functional phenotyping platform (FPP) in a semi-controlled environment greenhouse. We found that the domesticated tomato had a higher transpiration rate (E) and higher stomatal conductance (gs). The domesticated tomato also had greater biomass and greater leaf area under drought conditions, as compared to the wild tomato. Despite the domesticated tomato's higher E and higher gs, there was no difference between the photosynthetic rates (An) of the two lines. Moreover, the wild tomato had a higher maximum rate of rubisco activity (Vcmax), which might explain its greater leaf level and whole canopy water-use efficiency. The domesticated tomato's higher E and greater leaf area led to its earlier exposure to drought stress, as compared to the wild tomato, which maintained higher levels of soil water, enabling it to maintain steady rates of whole-canopy stomatal conductance (gsc) for extended periods. The wild tomato was also more sensitive to soil water availability and lowered its maximum transpiration rate (Emax) at a higher soil-water-content (SWC) level compared to the domesticated species. Our results suggest that the domestication of tomatoes favored morphological/anatomical performance traits over physiological efficiency.


Assuntos
Estômatos de Plantas , Solanum lycopersicum , Estômatos de Plantas/fisiologia , Secas , Folhas de Planta/fisiologia , Água/fisiologia , Solo , Transpiração Vegetal/fisiologia
20.
Plant Physiol ; 194(2): 732-740, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37850913

RESUMO

Vapor pressure difference between the leaf and atmosphere (VPD) is the most important regulator of daytime transpiration, yet the mechanism driving stomatal responses to an increase in VPD in angiosperms remains unresolved. Here, we sought to characterize the mechanism driving stomatal closure at high VPD in an angiosperm species, particularly testing whether abscisic acid (ABA) biosynthesis could explain the observation of a trigger point for stomatal sensitivity to an increase in VPD. We tracked leaf gas exchange and modeled leaf water potential (Ψl) in leaves exposed to a range of step-increases in VPD in the herbaceous species Senecio minimus Poir. (Asteraceae). We found that mild increases in VPD in this species did not induce stomatal closure because modeled Ψl did not decline below a threshold close to turgor loss point (Ψtlp), but when leaves were exposed to a large increase in VPD, stomata closed as modeled Ψl declined below Ψtlp. Leaf ABA levels were higher in leaves exposed to a step-increase in VPD that caused Ψl to transiently decline below Ψtlp and in which stomata closed compared with leaves in which stomata did not close. We conclude that the stomata of S. minimus are insensitive to VPD until Ψl declines to a threshold that triggers the biosynthesis of ABA and that this mechanism might be common to angiosperms.


Assuntos
Magnoliopsida , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Pressão de Vapor , Magnoliopsida/fisiologia , Ácido Abscísico/farmacologia , Folhas de Planta/fisiologia , Água , Transpiração Vegetal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA